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Abstract
1. Predicting species distributions and entire communities is crucial for ecologists, 

to enhance our understanding of the drivers behind species distributions and 
community assembly and to provide quantitative data for conservation efforts.

2. Popular species distribution models use statistical and machine learning meth-
ods but face limitations with multi- species predictions at the community level, 
hindered by scalability and data imbalance sensitivity. This paper explores the 
potential of deep learning methods to overcome these challenges and provide 
more accurate multi- species predictions.

3. Specifically, we introduced four distinct deep learning models that use site × spe-
cies community data but differ in their internal structure or on the input environ-
mental data structure: (1) a multi- layer perceptron (MLP) model for tabular data 
(e.g. in- situ/raster climate or soil data), (2) a convolutional neural network (CNN) 
and (3) a vision transformer (ViT) models tailored for image data (e.g. aerial ortho- 
photographs, satellite imagery), and a multimodal model that integrates both 
tabular and image data. We also show how adapted loss functions can address 
imbalance issues.

4. We applied these deep learning models to a plant community dataset comprising 
130,582 vegetation surveys encompassing 2522 species located in the French 
Alps. The tabular environmental data consisted of climate, terrain and soil in-
formation, while the images were derived from aerial photographs. All models 
achieved approximately 70% true skill statistics on hold- out data, demonstrat-
ing high predictive capacity for community data, the multimodal model being the 
best performing one. Additionally, we showcased how interpretability tools can 
illuminate community structure as seen by deep learning models.

5. Deep learning models offer a broad array of features for predicting entire spe-
cies communities. They handle imbalance issues and accommodate various data 
types, from tabular datasets to images, while also being equipped with insightful 
interpretation tools. The versatility extends to tabular datasets and images, with 
no clear superiority between the two. The last hidden layers can provide valu-
able features for modelling other species, and the trained models can be used 
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1  |  INTRODUC TION

Species distribution models (SDMs), also known as ecological niche 
models or habitat suitability models (Guisan & Thuiller, 2005), are 
computational tools used in ecology, biogeography and conser-
vation biology to predict and analyse the spatial distribution of 
species in a given geographic area. These models are based on the 
idea that a species' presence or absence (or its abundance) in a 
particular location is influenced by environmental factors. By ana-
lysing these factors and their relationship with species occurrence 
data, SDMs aim to provide insights into where a species is likely 
to be found in unobserved conditions (Elith & Leathwick, 2009; 
Guisan et al., 2017). Beyond single- species predictions, this goal 
can be extended to encompass communities of multiple species 
coexisting within the same geographical area. Modelling these 
communities proves valuable for monitoring regional biodiversity, 
as these species often share similar or closely related environmen-
tal preferences. Furthermore, exploring how these communities 
respond to specific environmental variables offers insights into 
their ecological niches, thereby enhancing our understanding of 
conservation efforts (Pollock et al., 2020).

Traditional SDMs usually rely on established machine learn-
ing methods that link species occurrences with environmen-
tal factors (Anderson et al., 2011; Araújo & Guisan, 2006; Elith 
et al., 2006; Franklin, 2010; Guisan & Thuiller, 2005; Guisan & 
Zimmermann, 2000). Among these methods, popular choices en-
compass MAXENT (Booth et al., 2014; Kramer- Schadt et al., 2013; 
Phillips et al., 2006; Phillips & Dudík, 2008), random forest (Bradter 
et al., 2013; Cutler et al., 2007) and boosted regression trees 
(De'Ath, 2007; Elith et al., 2008; Moisen et al., 2006). However, 
despite their effectiveness in single- species predictions, these 
methods often face challenges when dealing with multiple species. 
This limitation primarily arises from several reasons. (1) Limited 
scalability for modelling species- rich communities: Modelling spe-
cies communities can be immensely complex, involving the simul-
taneous consideration of thousands of species across hundreds 
of thousands of sites, particularly across large spatial scales. Few 
available frameworks are equipped to handle such extensive data-
sets, and recent implementations, such as joint SDMs, frequently 
struggle to address this issue effectively. (2) Imbalanced species 
occurrences: When modelling species communities, a significant 
challenge lies in the uneven distribution of species occurrences. 
The well- documented ecological phenomenon of skewed species 

distributions, where some species are rare while others are very 
frequent, poses a challenge. Traditional methods tend to prioritize 
modelling frequent species, neglecting proper representation of 
rarer ones. (3) The majority of existing methods and frameworks 
are limited to tabular data formats that encapsulate environmental 
features, typically in the form of a matrix associating sites with their 
respective environmental attributes. This constraint overlooks the 
potential wealth of information held within other data types, such 
as satellite imagery or airborne data, which could provide valu-
able insights yet remain unexplored. In essence, while traditional 
SDMs and joint SDMs have proven effective in various ecologi-
cal contexts, they encounter significant challenges when applied 
to species- rich communities, imbalanced species occurrences and 
the integration of diverse data sources, ultimately highlighting the 
need for more advanced and adaptable modelling approaches.

Owing to their exceptional performance, deep learning meth-
ods (Bengio et al., 2021; LeCun et al., 2015), which include vari-
ous types of neural networks, have gained widespread recognition 
across various domains, including computer vision (Krizhevsky 
et al., 2012a; Redmon et al., 2016), natural language processing 
(Devlin et al., 2018; Vaswani et al., 2017), gaming (Silver et al., 2016, 
2017), audio analysis (Noda et al., 2015; Purwins et al., 2019) and, 
more recently, even in the field of biology (Jumper et al., 2021; 
Senior et al., 2020). When coupled with a substantial volume of 
data, neural networks have shown their ability to efficiently ex-
ploit input information. Furthermore, when combined with an ap-
propriately tailored model and a training strategy aligned with the 
specific task at hand, these methods consistently outperform tradi-
tional approaches. Another compelling advantage of deep learning 
is its adaptability in network design to match the characteristics of 
the input data. For example, convolutional neural networks (CNNs) 
(He et al., 2016; LeCun et al., 2010) are particularly well- suited for 
image data due to their consideration of translation invariance and 
equivariance, along with parameter efficiency when extracting fea-
tures from large images. On the contrary, multi- layer perceptron 
(MLP) models (Amari, 1967; Bengio et al., 2000) excel at processing 
big tabular data, capable of handling complex non- linear problems 
effectively. Nevertheless, despite the remarkable achievements of 
deep learning techniques across diverse domains, their application 
in ecology, particularly in the context of SDM, remains relatively 
uncharted territory (Brodrick et al., 2019; Chen et al., 2017). Early 
endeavours in this domain involved the utilization of neural net-
works with simplistic architectures featuring a single hidden layer 

to support transfer learning to related tasks. The field of ecology now possesses 
an additional, potent tool in its arsenal that can foster basic and fundamental 
research.

K E Y W O R D S
co- occurrence, deep neural networks, explainable AI, species community, species distribution 
models
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(Baran et al., 1996; Lek et al., 1996). These models, as implemented 
in the R package biomod2 (Thuiller et al., 2009), exhibited a sus-
ceptibility to underfitting and often yielded suboptimal perfor-
mance on training data, thereby yielding unreliable predictions 
(Zhang et al., 2020). More recently, a notable example is the work 
by (Deneu et al., 2021), which introduced CNNs to predict the like-
lihood of a specific plant species being present, conditioned on the 
observation of a plant at a given location. Additionally, (Estopinan 
et al., 2022) harnessed the temporal dimension of Sentinel- 2 data 
to model the global distribution of orchids using CNNs. These ini-
tiatives show a growing interest in the integration of deep learning 
methodologies within species distribution modelling. Nonetheless, 
it is imperative to acknowledge that deep learning methods do 
not offer a universally applicable solution. The choice of the deep 
learning architecture and the suitability of these methods hinge 
on the distinctive characteristics of the data and the particular re-
search objectives at hand. Moreover, it is worth noting that deep 
learning models frequently demand substantial volumes of data, 
and ecological datasets may be inherently limited in scope, pre-
senting challenges in certain applications.

In this paper, we propose a guided tour into the realm of deep 
learning methods and investigate their potential for multispecies 
predictions (Figure 1). We have crafted models tailored to handle 
two of the most prevalent data structures: tabular data and image 
data. Tabular data represent the standard format extensively used 
in species distribution modelling, encompassing various estab-
lished algorithms such as Maxent, boosted regression trees and 
generalized linear models. This data format includes environmental 
information for each sampling point, such as soil pH, mean annual 
temperature and vegetation type, often collected either in situ or 
obtained from online databases like CHELSA (Karger et al., 2016, 
2020) or SoilGrid (Hengl et al., 2017; Poggio et al., 2021). In con-
trast, image data typically originate from sources such as satellites 
or aerial sensors and are characterized by a specific resolution. It 
can manifest in various forms, including multiple spectral bands 
(e.g. Sentinel- 2 data), LiDAR data, or RGB- infrared images. Given 
the diverse nature of these two data types, we implemented multi- 
species models following three well- known deep learning models 
for our study: A MLP model designed to handle tabular data con-
taining environmental variables; a CNN model and a vision trans-
former (ViT) model specifically engineered for processing image 
data. Finally, we also developed a multimodal model to profit out 
of both the tabular and the image data (Figure 1). To contrast and 
validate the efficacy of these models, we applied them all on the 
same case study involving 130582 plant community plots in the 
French Alps, encompassing a total of 2522 species, while account-
ing for a significant class imbalance (a 3464: 1 imbalance ratio in 
our case). Finally, our paper delves into the analysis of the models, 
employing interpretability tools that enhance our understanding 
of their underlying characteristics. We specifically conduct a com-
prehensive comparison between the MLP and the CNN, exploring 
their respective behaviours, similarities and distinctions. In sum-
mary, our paper is guided by the following objectives:

• Introducing fundamental deep learning methods for community- 
level species distribution modelling, featuring state- of- the- art 
models tailored to address image and tabular data.

• Demonstrating the performance capabilities of the proposed 
methods on a relatively large dataset.

• Conducting a thorough comparison among the proposed models, 
beyond merely assessing their predictive abilities, to discern the 
underlying learned patterns and identify the key features driving 
each model's decisions.

• Discussing extensively the challenges and opportunities that 
deep learning methods are facing in the context of SDM.

Through this work, we aim to shed light on the potential of deep 
learning methods in the domain of species distribution modelling, 
providing valuable insights for future research and applications in 
this field. The subsequent sections provide a structured overview 
of our approach. In Section 2, we present the multi- species predic-
tion problem in mathematical terms, introduce state- of- the- art deep 
learning models and review key architectures in (see also Figure 1). 
In Section 3, we further detail the case study and the corresponding 
results, while offering insights into our trained models tailored for 
image and tabular data by applying interpretability tools. This also 
includes a comparative analysis of the commonalities and distinc-
tions among models, especially between CNN and MLP. Concluding 
our model exploration, we delve into the prospects for future work 
and offer our concluding remarks in Sections 4 and 5, respectively.

2  |  METHODOLOGY

In this study, we introduce four distinct deep neural network mod-
els, each tailored to handle a specific type of input data or having a 
different internal structure (Figure 1): (1) a MLP model that copes 
with tabular input data; (2) a CNN model; (3) a ViT model that tackles 
image input data; and finally (4) a multimodal modal that combines 
both data structures. In the following, we initially describe the prob-
lem setting, then we introduce the general structure and functional-
ity of a neural network, and we present our applied models, while 
summarizing the characteristics of each model.

2.1  |  Problem statement

Let's here consider that our data are made of one training dataset 
and one testing dataset for evaluation. The training and testing data-
sets can either originate from the same initial dataset, partitioned 
into two components using a random scheme or more sophisticated 
strategies (as suggested by Roberts et al., 2017), or they can be 
independent datasets. In the context of multi- species distribution 
prediction problems, we are given a training dataset consisting of 
N species community plots, referred to as 

�����
=
{(
xn, yn

)}N
n=1

,  
and a testing dataset of M species community plots, termed 


𝓉ℯ𝓈𝓉
=
{(
x�
m
, y�

m

)}M
m=1

 . Each community plot within the sets 
�����
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    |  231HU et al.

F I G U R E  1  General overview of deep learning model architectures for supervised classification/regression of tabular/image data.
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and 
𝓉ℯ𝓈𝓉

 is annotated by a list of labels (yn and y′
m

 respectively) 
representing the species observed in the plot amongst the set of K 
modelled species S. Additionally, each community plot is associated 
with environmental features in the form of a d- dimensional vector 
xn, x

′
m

 and/or an image of dimensions (height h, width w) and a depth of  
c channels representing the measured signals (for instance RGB  
images have three channels: red, green, blue).

A deep multi- species distribution model is thus a function f(x; θ) 
that predicts the probability of each label (species) given the input x′

m
 

such that f is a neural network with weight parameters �. We to fit f on 
the training dataset 

�����
 and evaluate it on the test dataset 

𝓉ℯ𝓈𝓉
.

2.2  |  Neural networks

Neural networks (Goodfellow et al., 2016) serve as the fundamental 
building blocks for most deep learning methods. Internally, a 
general L- layered neural network comprises neurons with learnable 

parameters denoted as � =  ,. These parameters consist of 
weights  = W

L

l=1
 and biases  = b

L

l=1
 for each layer. Activation 

functions, such as ReLU (Agarap, 2018) and GeLU (Hendrycks & 
Gimpel, 2016), introduce non- linearity to neuron outputs, effectively 
addressing the vanishing gradient issue (Pascanu et al., 2013). The 
final layer uses activations like softmax (Nwankpa et al., 2018) or 
sigmoid (Jamel & Khammas, 2012) to map outputs into distributions.

Functionally, a neural network, as previously mentioned, esti-
mates a prediction function f( ⋅ ) that maps input data (community 
plots in our case) to desired outputs (observed species distributions). 
In general, f( ⋅ ) consists of two essential functions:

where fe( ⋅ ), known as a feature extractor, non- linearly transforms the 
inputs (images or tabular environmental variables) into new vector rep-
resentations, termed ‘feature vectors’ or ‘embeddings’. Subsequently, 
a generalized linear function fc( ⋅ ), referred to as a classifier, executes 
the final prediction, determining species probabilities. Consequently, 

(1)f( ⋅ ) =
(
fe ◦ fc

)
( ⋅ ),

F I G U R E  1   (Continued)
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a neural network is a synergistic combination of a feature extractor 
involving multiple transformation layers up to the penultimate layer 
(layer L − 1), and a classifier corresponding to the final layer (layer L).

2.2.1  |  MLP model

For tabular data inputs in the context of multi- species predictions, 
we leveraged the MLP, a well- established neural network architec-
ture. MLPs are equipped to handle tabular data efficiently, includ-
ing the ability to manage large volumes of input data, solve complex 
nonlinear prediction tasks, facilitate fast learning and maximize the 
model's capacity to identify feature connections. The feature extrac-
tor fe( ⋅ ) in MLPs comprises a series of non- linear transformations 
performed via fully connected layers. In each layer, the transforma-
tion is expressed as follows:

This process involves multiplying the input of layer l by the layer's 
weights, adding the bias to create a linear relationship, and applying 
a non- linear activation function, denoted as �( ⋅ ), to obtain the layer's 
output. This output then becomes the input for the subsequent layer, 
with this operation repeated for each layer until reaching the penulti-
mate layer.

As for the classifier, denoted as fc( ⋅ ), it is characterized as a linear 
classifier that takes the features extracted from fe( ⋅ ) as input and 
generates scores, often referred to as ‘logits’, for the targeted la-
bels. Mathematically, the logits, represented as z, can be expressed 
as follows:

In our proposed MLP model, we designed a straightforward network 
architecture comprising two hidden dense layers. The rectified linear 
unit (ReLU) serves as the activation function in each hidden layer, with 
batch normalization (Ioffe & Szegedy, 2015) applied before activation 
to adjust the data distribution. To counteract overfitting, where the 
model becomes overly tailored to the training data and fails to gen-
eralize, a dropout layer (Srivastava et al., 2014) is introduced during 
training to randomly exclude neurons. Considering the simultaneous 
modelling of all K species, the final layer of our MLP model comprises 
K neurons. Consequently, the logits z =

[
z1, … , zk, … zK

]
 form a  

K- dimensional vector, where each component zk represents the score 
for species k. These logits are subsequently mapped into species distri-
butions, p(y| x; �), via a sigmoid function:

which indicates the probability of the presence of species k given the 
input x. The use of the sigmoid function enables the neural network 
to predict the presence of each species independently with dedicated 
neurons, allowing for the prediction of multiple species simultaneously 

or even no species at all. In contrast, the softmax function, another 
popular activation function, normalizes the outputs to sum to one, es-
sentially treating the prediction as a ‘one- species- vs- all’ classification 
(see Deneu et al., 2021). This makes softmax less flexible for capturing 
species of all co- occurrence patterns.

2.2.2  |  CNN model

While MLP models excel in handling 1D tabular data, they are less 
suited for 2D image data due to the extensive number of neurons re-
quired (typically, one neuron per pixel). Additionally, MLP layers are 
densely connected, leading to an abundance of parameters that can 
quickly result in redundancy and overfitting. To address these limi-
tations, we turn to CNNs when dealing with image data. CNNs em-
ploy convolution operations, with shared weights applied across the 
entire image. For vision- related tasks like object classification, this 
approach offers two significant advantages. First, it enables model 
equivariance with respect to translation, meaning that detecting a 
translated object in an image does not necessitate learning entirely 
new weights. Second, it reduces the number of model parameters 
that need to be learned. In a CNN, the convolution operation for 
layer l is expressed as follows:

where * signifies a convolution operation. Unlike the multiplication ap-
proach outlined in Equation (2), here, the input and weights interact 
through convolution. For image data, Wl is systematically applied to 
different positions within the image, resulting in the creation of feature 
maps after activation. This process is repeated for each convolutional 
layer.

In our proposed CNN model, we adopt the well- established 
ResNet50 architecture (He et al., 2016). The feature extractor com-
ponent includes an initial convolutional layer and a subsequent max- 
pooling layer (Nagi et al., 2011). This is followed by multiple blocks, 
each containing three convolutional layers. Finally, another max- 
pooling layer is used to reduce the feature maps to feature vectors, 
which are subsequently fed into the classifier component. The clas-
sifier portion mirrors the structure used in the MLP model, where 
the features undergo processing through a linear classifier to pro-
duce logits. Similar to Equation (4), we used the sigmoid function for 
the mapping process to compute probabilities.

2.2.3  |  Vision transformer model

Vision transformers (Dosovitskiy et al., 2021) are a novel archi-
tecture used in computer vision that makes use of the attention 
mechanism at the basis of Transformers (Vaswani et al., 2017) that 
revolutionized the field of Natural Language Processing.

Different from CNNs that apply convolutional operations on 
image data, a ViT firstly dismounts an image input into several patches 

(2)xl = �

(
W

T

l−1
× xl−1 + bl−1

)
.

(3)z = xL = W
T

L−1
× xL−1 + bL−1.

(4)p
(
y = sk| x; �

)
=

1

1 + exp
(
− zk

) ,

(5)xl = �

(
W

T

l−1
∗xl−1 + bl−1

)
,
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transformed by a ViT encoder into feature vectors, followed by a linear 
classifier. A ViT encoder usually consists of the following elements: (1) 
a projector that transforms flattened image patches into new vectors 
that are more suitable for the model; (2) a positional encoder that adds 
positional information in each dimension of a vector, providing more 
contexts for the model to learn; and (3) multiple repeated attention 
blocks containing self- attention layers (also termed transformer en-
coder layers) that capture the relationships between vectors. And it 
is the key component differentiating a ViT with other models. For an 
image input, such model could potentially better capture the relation-
ships between patches, making predictions based on the common de-
pendency patterns that the model learns.

To test the performance of ViT in our application, we hereby pro-
pose to use a basic ViT presented in Figure 1 to predict multiple spe-
cies. The model reshapes an image into patches of size 16 × 16, then 
performs a linear projection and a positional encoder with trainable 
parameters, followed by 12 repeated attention blocks before enter-
ing into the classifier.

2.2.4  |  Multimodal model

Multimodal architectures are designed to integrate and interpret in-
formation in diverse formats (modalities) to enhance the accuracy 
and efficiency of deep learning methods.

Here, we propose to construct a multimodal model that takes 
both tabular and image data as inputs, benefiting from the poten-
tial complementarity of environmental features and aerial images in 
our case study. With regard to the model structure, we concatenate 
the previously proposed MLP and CNN models in the feature space, 
followed by a single classifier at the end that performs predictions 
based on concatenated features, as depicted in Figure 1.

For the case study in this paper, we applied our above models 
and gave their performance as well as analysis. And in Section 4, we 
discussed the choice of model architectures in more details.

3  |  C A SE STUDY

3.1  |  Dataset

To test the proposed deep learning models for multi- species 
predictions, we focused on a plant community dataset collected by 
the National Alpine Botanical Conservatory (termed CBNA hereafter) 

over the last 20 years in the French Alps (Poggiato et al., 2023). This 
plant community data contains a total of 130,582 vegetation relevés 
(around 10 × 10 m plots) covering 2522 different plant species with a 
location uncertainty of at most 100 m. Each species has a minimum 
of 4 and a maximum of 13,857 observed occurrences. Thus, species 
prevalences are heavily unbalanced. The dataset includes both 
image and tabular data, allowing different models to be built and 
compared with respect to their performances. More details on the 
CBNA dataset can be found in Appendix S1.

3.2  |  Training strategies and evaluation metrics

All of our models are learned following a supervised training scheme 
(see Appendix S1 for more in- depth details). During training, regu-
larization techniques are applied to prevent the overfitting so that 
the model can generalize better to new data. In addition, given the 
heavy imbalance of species occurrences in the dataset, we propose 
to use the class- balanced (CB) focal loss function (Cui et al., 2019), 
preventing the model from ignoring rare species. Our own experi-
ments with other lost functions were less positive and we reached 
out the best performing models with the CB focal loss function (see 
Sections A2 and A4, Table S1 in Appendix S1). In terms of evaluation, 
the true skill statistics (TSS) score averaged across species (macro- 
TSS) or across samples (micro- TSS) (Somodi et al., 2017) was used 
to evaluate the match between observations and predictions (see 
Section A3 in Appendix S1 for more details).

Data and code to reproduce the models are available here: 
https:// github. com/ yhu01/  CBNA/ tree/1. 0. 0.

3.3  |  Results

Employing the previously outlined training strategies for all models, 
we achieved commendable predictive accuracy on the testing 
dataset: a macro- TSS of around 69% and micro- TSS around 70% (see 
Table 1). Notably, despite the different types of environmental data 
used (tabular environmental variables for the MLP and images for the 
vision models), the macro- TSS scores for these models were similar, 
with the MLP even outperforming the CNN slightly. However, in the 
case of micro- TSS, the CNN exhibited slightly better performance 
at 75.24%, compared with the MLP's 71.41%. The discrepancy 
between micro-  and macro- TSS scores suggests the dominant 
influence of well- predicted species on the former, whereas the 

Model No. of species Loss function Macro- TSS Micro- TSS

MLP 2522 CB focal loss 69.61% 71.41%

CNN 69.67% 75.24%

ViT 64.26% 66.67%

Multimodal 71.35% 76.87%

Note: All models are trained from scratch using the same loss function, and the threshold in each 
model was tuned using the validation dataset.

TA B L E  1  True skill statistics (TSS) 
scores of the proposed deep learning 
models on the testing plant community 
dataset.
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latter is more affected by poorly predicted species. As for the ViT, 
we obtained results slightly lower than the proposed CNN model. 
This may be due to the fact there were not enough training data, 
since a ViT usually requires a large number of inputs to learn well 
(Touvron, Cord, El- Nouby, et al., 2022). The strong class imbalance 
may also influence the model's ability to associate semantic features 
for rare species. Lastly, we can see that by using a multimodal model 
that fuses MLP and CNN in a situation where both input structures 
are available brings extra gain on the performance than using only 
single modalities.

In terms of training time, the proposed vision models required 
approximately 15 h for training using a single GPU V100. In contrast, 
the MLP did not necessarily demand a GPU for training and can be 
learned using a CPU in about 1 h. This makes the MLP a faster and 
more accessible option, particularly when limited computing re-
sources are available.

We then assessed the models' proficiency (with TSS) in handling 
species with varying occurrence levels (Figure 2). In general, the mod-
els showed commendable results across all species, including rare 
ones with significantly fewer occurrences, underscoring their effec-
tiveness in addressing data imbalance. Yet, it is noticeable that mod-
els for rare species displayed greater variance in their performance. 
This variance was expected since the limited number of training and 
testing data can lead to substantial score fluctuations. Additionally, 
all models exhibit similar performance trends, suggesting that MLP 
can be as effective as CNN for multi- species predictions and that the 
multimodal option is the most performing since it somehow takes 
the best of the two data structures. Yet, this is interesting to note 
that, in average but also in terms of variance across species, the MLP 
tends to be slightly better than the CNN for rarer species, a trend 
that reverses when it comes to more common species (Figure 2). The 
multimodal model was in average but also in variance better than 

the MLP and CNN for all categories of occurrence excepted for the 
rarest one, where the MLP achieved better performances.

3.4  |  Interpretability

Explainable AI (xAI) techniques (Molnar, 2022) can help explain black 
box model predictions at various interpretability levels and with var-
ying degrees of model- specificity.

At the level of the feature extractors, model internals such as fea-
ture maps (Qin et al., 2018) and class- activation maps (Chattopadhay 
et al., 2018; Selvaraju et al., 2017a) for CNNs, or attention masks for 
ViTs (Chefer et al., 2021) are model- dependent and tailored to spe-
cific architectures, thus requiring a deep understanding of the layers 
and parameters of the architecture.

As depicted in Figure 1, all supervised deep learning architectures 
share a common intermediate output namely the feature vectors or 
embeddings which can be visualized to analyse compositional simi-
larities between plots. Given the high dimensionality of feature em-
beddings, tools such as PCA (Mackiewicz & Ratajczak, 1993), UMAP 
(McInnes et al., 2018) and t- SNE (Van der Maaten & Hinton, 2008) 
are designed to reduce the feature dimension effectively, without 
losing essential information. In addition, further analyses based on 
clustering is often applied to observe commonalities of the learned 
features. Techniques applied to the embeddings have the advantage 
of not being tied to a specific neural model, and do not require a 
surgical understanding of the architecture.

Finally, at the classifier level, the great wealth of model- agnostic 
machine learning interpretability tools can be mobilized. This in-
cludes tools to measure the relative importance of features: glob-
ally (e.g. Permutation importance; Breiman, 2001), their local 
feature contribution (e.g. LIME; Ribeiro et al., 2016) or the variation 

F I G U R E  2  Single species true skill 
statistics (TSS) as a function of species 
occurrence ranges for multi- layer 
perceptron (MLP), convolutional neural 
network (CNN) and the multimodal 
models (the vision transformer (ViT) is not 
represented since it presented a lower 
general performance than the others and 
for the sake of readability). Two thousand 
five hundred twenty- two species, divided 
into five equal parts, each containing 
20% of the species, depending on their 
frequency in the training dataset. The first 
box illustrates TSS scores for species with 
occurrences ranging from the minimum 
(four in our case) to 60. The second box 
shows performance for species with 
occurrences ranging from 60 to 164, and 
so on.

 2041210x, 2025, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14466 by C
ochraneB

ulgaria, W
iley O

nline L
ibrary on [03/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



236  |    HU et al.

partitioning across all features (e.g. SHAP; Lundberg & Lee, 2017). 
Response curves that illustrate the output response as a function 
of input features also fall in this category, including Evaluation Strip 
(Elith et al., 2005), Partial Dependence Plots (PDP, Friedman, 2001) 
or Accumulated Local Effects (ALE, Apley & Zhu, 2020).

While these methods are model agnostic, they are often applied 
to MLP and other traditional machine learning models on tabular 
data, as they converge more slowly on vision models.

In this section, we used some popular interpretability tools at 
three different levels (feature extractor, embeddings and classi-
fier), and apply them to our trained models (mainly MLP and CNN, 
since the ViT showed lower performance in general) to observe 
their behaviours. Note that these techniques are not restricted to 
multi- species prediction task but can be broadly deployed to anal-
yse other learning tasks such as object classification, detection and 
segmentation.

3.4.1  |  Inside the feature extractor

For vision models such as CNN or ViT, that are often considered 
less interpretable due to their use of images, several approaches are 
available to highlight which features in the feature maps are being 
utilized, or not. This interpretability can be invaluable for gaining 
insights into how the landscape or environment influences species 
distributions or to diagnose potential biases in the data. Here, we 
provide a demonstration of the CNN model in the context of multi- 
species predictions. First, we visualized feature maps generated 
by our CNN. Typically, an input is convoluted with different filters 
(often referred to as ‘kernels’ or ‘filters’) to produce various feature 
maps. Each feature map corresponds to the filter's response to the 
input, with each element in the feature map indicating the activation 
level of a specific neuron within the network. Consequently, acti-
vated neurons (those with positive responses) in a feature map cor-
respond to features learned by the filter, while their values signify 
the presence of these features in the input.

In Figure S3, we provide an example of an input image, which 
we feed through our trained CNN to extract corresponding feature 

maps from early, middle and final convolution layers. These feature 
maps revealed a hierarchical learning process. The feature maps 
generated in the early layers of the CNN predominantly captured 
low- level features like edges, boundaries and corners. As we prog-
ress through the network's layers, feature maps become capable of 
learning more complex high- level features, including shapes or even 
entire regions.

In addition to visualizing feature maps, we also employ the 
Gradient- weighted Class Activation Mapping (Grad- CAM; Selvaraju 
et al., 2017b) technique to generate class- activation maps for each 
targeted species. Specifically, an activation map for a species is com-
puted as a weighted sum of feature maps obtained from the final 
convolution layer in the CNN.

When overlaid on the input image, these activation maps pro-
vide insights into the areas in the image that the model identifies 
as important for predicting the presence of the targeted species. In 
Figure 3, we provide an example image containing six different spe-
cies. For each of these species, we display the corresponding acti-
vation map (from Figure 3a to f) and indicate the model's prediction 
for that species in red. These activation maps reveal that different 
areas of the image are emphasized for each species, demonstrating 
CNN's ability to predict the presence of multiple species effectively 
in a multi- species prediction setting.

3.4.2  |  Embedding visualization

While our proposed models were able to accurately predict multiple 
species altogether, understanding the underlying patterns behind 
these predictions is crucial. This is feasible due to the network's 
capability to learn generalized features during training, aligning with 
the principles of Transfer Learning (Pan & Yang, 2009; Torrey & 
Shavlik, 2010). Additionally, the feature extractor reduces the input 
dimensionality significantly, streamlining the process while retaining 
essential input information. To demonstrate this, we computed 
the image embeddings for the training images Dtrain using CNN's 
feature extractor, generating a total of N points, each represented 
as a 2048- dimensional feature vector. We then project these 

F I G U R E  3  Activation maps for 
targeted species contained in an example 
input image, and (a–f) the prediction for 
each targeted species is described on top 
in red.
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high- dimensional feature vectors into a three- dimensional space for 
visualization purposes using Uniform Manifold Approximation and 
Projection (UMAP) (McInnes et al., 2018) (Figure 4a). Unsurprisingly, 
the 3- D projection unveiled distinct clusters of community plots, 
each group sharing common image- derived features. This concept 
may resonate with those experienced in ecological ordinations, 
somewhat akin to community plot ordinations mapped onto a 
3- D space through environmental principal component analysis 
(PCA). However, the distinguishing factor here is that the primary 
components emerging from UMAP reflect highly intricate features 
learned directly from the images, providing a unique perspective on 
community patterns.

To highlight differences, we employed a K- means algorithm 
(Krishna & Murty, 1999) to cluster the different community plots 
(Figure 4b), with the number of clusters (8 in our case) chosen 
using the elbow method (Syakur et al., 2018). Community plots in 


�����
 belonging to the same cluster tend to be explained by the 

same image features (i.e. landscape characteristics and context) and 
are likely to share similar species or species with similar functional 
characteristics.

To further illuminate the insight offered by these clusters, we 
selected three clusters (designated as Cluster 1, 2, and 3) from 
Figure 4b. Within these clusters, we present nine representative 
images, as showcased in Figure 5. It is worth observing that these 
diverse images captured from the clusters depict typical landscapes 
found in the European Alps.

Cluster 1, for example, appears closely linked to sparsely veg-
etated landscapes found in the alpine zone. Meanwhile, Cluster 2 
shows densely vegetated forests from the montane zone, and Cluster 
3 represents low- elevation and human- dominated sparsely forested 
regions bordered by roads and cultivated areas. These clusters not 
only provide insight into distinct landscape types but also help iden-
tify the dominant species characterizing these communities. For in-
stance, Table 2 shows the top five dominant species presented in 
each of the selected cluster, and we note that a species can belong to 
multiple clusters, a common scenario for closely neighbouring clus-
ters in the 3- D dimension space (Figure 4b), as well as for generalist 
plant species. In essence, the CNN models communities by grouping 
images with similar landscapes, recognizing the profound influence 
of landscape characteristics on species distributions.

3.4.3  |  Classifier- level interpretability

In this section, we delve into understanding the interpretability of a 
model at the classifier level to gain insights on how it makes the final 
predictions based on features. The study at this level is often con-
ducted on the MLP model as it gives clearer indications on the influ-
ence of input variables leading to the global predictions. Therefore, 
for our MLP model concerning multispecies distribution predic-
tions based on tabular environmental data, we employed the SHAP 
(SHapley Additive exPlanations) implementation of Shapley values 
as introduced by Lundberg et al. (Lundberg & Lee, 2017).

For a given observation and for each variable, the core idea of 
Shapley values is to compute the change in prediction when in-
cluding the focal variable(s) compared with when it is excluded i- e 
randomized, averaged across all the coalitions of the remaining en-
vironmental variables. The difference between the model's predic-
tion from the focal observation and its average prediction across the 
dataset, referred to as payout, is equal to the sum of Shapley values 
across all variables. This property known as Efficiency coupled with 
the local to global consistency of Shapley values provides a theoret-
ical foundation for the use of Shapley values to partition the model 
predictions into the relative contributions of the various environ-
mental predictors for each species (Molnar, 2022).

The SHAP algorithm is an efficient method to estimate Shapley 
values using a local linear model for each observation. Here, we use 
the Deep SHAP (Shrikumar et al., 2017) implementation adapted for 
neural networks.

To match our approach for the CNN model, here we computed 
the SHAP values for our MLP based on clusters as well. Following 
the same procedure as for the CNN model, we first used the feature 
extractor of our trained MLP and obtained 128- dimensional feature 
vectors for the training data. Then, we applied K- means clustering 
(here we set the cluster number as 8 to compare with the CNN 
model) to group similar feature vectors based on their Euclidean 
distances within the feature space. Subsequently, we illustrated the 
variable importance for two distinct clusters (Figure 6; Figure S4), 
by aggregating the feature contributions of the five dominant spe-
cies of each cluster. For the identified cluster in Figure 6, variables 
such as temperature seasonality (TSeason), precipitation season-
ality (PSeason), annual sum of precipitations (PTotY) and the soil 

F I G U R E  4  Visualization of features 
extracted from the feature extractor of 
the trained convolutional neural network 
(CNN), projected onto 3- D space using 
UMAP. Figure (b) is the clustered version 
of figure (a) using K- means algorithm, in 
which each colour represents a cluster.
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carbon–nitrogen(CN) ratio significantly influenced the predictions 
of these species. On the contrary, the cluster depicted in Figure S4 
was primarily impacted by mean annual temperature (TMeanY) and 
temperature seasonality (TSeason). Interestingly, to provide a more 
visual representation of what these clusters entail, we included sam-
ple images alongside the plot. It is important to note that these im-
ages are solely for illustrative purposes and were not used in the 
model, in contrast to the CNN. Yet, we can see that these clusters 
based on environmental variables only do also represent similar 

landscape context and structure. This explains why both MLP and 
CNN, while not based on the same data input and structure, reached 
similar predictive accuracy. They somehow ‘see’ the same things. In 
conclusion, the SHAP analysis based on the cluster illustrates the 
MLP model's capacity to model communities by giving precedence 
to various environmental variables, thus enhancing the interpretabil-
ity of multi- species distribution predictions. As a side note, SHAP is 
also able to calculate variable importance directly on communities, 
which might offer very interesting explanatory tools for ecologists.

F I G U R E  5  (a–c) Example clusters learned by the proposed convolutional neural network (CNN) in the feature space, with some input 
images selected and shown for each cluster.

TA B L E  2  Top five dominant species presented in each of the selected cluster illustrated in Figure 5.

Cluster Cluster 1 Cluster 2 Cluster 3

Dominant species Bistorta vivipara (L.) Delarbre, 1800; 
Festuca violacea Ser. Ex Gaudin, 1808; 
Plantago alpina L., 1753; Poa alpina 
L., 1753; Carex sempervirens subsp. 
sempervirens Vill., 1787

Bromopsis erecta (Huds.) Fourr., 
1869; Crataegus monogyna Jacq., 
1775; Poterium sanguisorba L., 1753; 
Quercus pubescens Willd., 1805; 
Teucrium chamaedrys L., 1753

Aria edulis (Willd.) M.Roem., 1847; 
Bromopsis erecta (Huds.) Fourr., 
1869; Buxus sempervirens L., 
1753; Fagus sylvatica L., 1753; 
Teucrium chamaedrys L., 1753
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In the previous section, we demonstrated how the CNN is adept 
at grouping inputs that exhibit similarity in terms of visual content 
in images. This is especially beneficial in our problem, where images 
depicting similar landscapes are assembled into coherent clusters. 
However, the approach taken by the MLP differs from this. For 
instance, in Figure S4b, there are two types of landscapes differ-
entiated by their texture. Images with a cyan texture identify min-
eral conditions at very high altitudes with few apparent vegetation 
patches in brown (referred to as high- elevation mineral landscapes), 
while more brown pictures rather display low productive high- 
altitude meadows (referred to as high- elevation sparsely vegetated 
landscapes). Interestingly, our CNN successfully distinguishes be-
tween these two types of images and assigns them to separate clus-
ters. In contrast, the MLP groups them into the same cluster. This 
raises the question of how the MLP assembles species community 
plots and what criteria it uses to do so. Upon closer inspection, it 
becomes evident that these images share certain common charac-
teristics, such as barren lands, the absence of water, and sparse veg-
etation. Importantly, these landscape characteristics are associated 
with the environmental features in the input data. Thus, in Figure S2, 
we depict histograms of specific input features (TSeason, CN, and 
LENGTH in our case) for each type of landscape and compare their 
similarities using Earth Mover's Distance (EMD, Rubner et al., 2000). 
The EMD quantifies the optimal distance required to transform 
one histogram into the shape of the other. Smaller EMD values 
indicate greater similarity between the two histograms, signifying 

approximate feature values. From Figure S2, it is evident that the 
‘cyan’ landscape and the ‘brown’ landscape share similar TSeason, 
CN and LENGTH value ranges, with standardized EMD values of 
0.21, 0.32 and 0.35, respectively. These small EMD values explain 
why the MLP groups these two landscapes into the same cluster.

4  |  DISCUSSION

In this work, we have achieved several significant goals: (1) intro-
ducing deep neural network models designed for multi- species 
predictions and presentation of four distinct models tailored to 
handle tabular and image inputs, respectively; (2) implementing 
these models on a real dataset comprising 2522 plant species. Our 
models achieved commendable performances across both MLP and 
CNN, the ViT being less performing and the multimodal being the 
best; (3) demonstrating the models' versatile capabilities, extending 
mere species predictions to identify and display common landscape 
and environmental features that explain similar communities; and 
(4) conducting a thorough comparative analysis mainly between 
the proposed MLP and CNN on model structure, training time and 
explainability.

From this, we can highlight in general some similarities and dif-
ferences among the proposed models, especially between the MLP 
and the vision models (CNN and ViT) in the context of multi- species 
predictions.

F I G U R E  6  Environmental variable contributions of a cluster (a) computed using SHAP for the multi- layer perceptron (MLP) model, with 
sample images (b) associated with the cluster (which are not the inputs here) illustrated alongside.
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Similarities:

• Both types of models adhere to the general architecture of a 
neural network, incorporating a feature extractor responsible 
for extracting crucial input features and a classifier for executing 
predictions.

• They effectively tackle data imbalance concerns by implementing 
the same loss function, leading to great predictive performance. 
The MLP, handling 1D tabular data, achieves competitive TSS 
scores compared with the CNN and ViT on 2D image data.

• Both the vision models and MLP exhibit the capacity to learn 
communities by discerning common features within their respec-
tive inputs.

• In terms of performance in our case, both the MLP and vision 
models exhibit similar trends across species occurrences, with 
high variances on rare species, and less variant results as species 
prevalence grow.

Differences:

• Divergent processing of distinct data structures as inputs, with 
the CNN and ViT adeptly handling image data and the MLP spe-
cifically engineered for tabular data.

• Architecturally, feature extractors for the MLP and vision mod-
els diverge significantly. While the CNN and ViT both incorporate 
specifically designed layers for image processing, the MLP inte-
grates multiple fully connected layers.

• The proposed MLP is notably faster to train and can operate with-
out the need for GPUs, whereas the CNN and ViT require GPUs 
and longer training times.

• Variable approaches in aggregating environmental/image fea-
tures for modelling species communities. The vision models excel 
at recognizing distinct landscapes and grouping those with similar 
textures, while the MLP focuses on identifying similarities in en-
vironmental features and grouping inputs with similar values of 
relevant features.

• Regarding performance, the MLP tends to outperform the vision mod-
els on rare species, and the results reverse for more common species. 
Using direct environmental features known to influence species ecol-
ogy (e.g. soil chemical properties and temperature) might lead the MLP 
to better model the complexity of rare species niches.

The presented multimodal model obtained superior results by 
leveraging the complementarity of the tabular and image modalities. 
With these findings, we anticipate that ecologists will gain a more 
nuanced understanding of the intricacies associated with employing 
deep learning models for modelling multiple species. This, in turn, 
should encourage a broader embrace of the flexibility offered by 
these innovative approaches.

There are yet several promising avenues for future research, 
each capable of enhancing the performance and understanding of 
these models.

4.1  |  Overestimation of species richness

As traditional SDMs and many joint SDMs that tend to produce 
overly optimistic predictions of species presence, deep learning 
methods are also challenged with the overestimation of species 
occurrences within communities. In our case, due to the strong 
imbalance of our dataset that contains far more species absences 
than presences, a neural network model, without any weight 
assignment, tends to bypass the hard training and predict ab-
sences all the time. In order to avoid the issue, we assigned pre-
sent species with a weight (also called an ‘importance factor’) 
that is significantly larger than absent species (to a 1000:1 ratio). 
However, assigning large weights to present species could also 
over- encourage the model to predict presences, resulting in the 
overestimation problem. Therefore, solutions are required, for a 
strongly unbalanced dataset, to find the right trade- off between 
(1) a model's training ability to not only predict the majority cases 
(absences), and (2) overestimation of species richness by predict-
ing too many presences. Yet, it should be noted that this overes-
timation of species richness is likely to arise from other ecological 
processes that are not explicitly modelled such as priority effects, 
demography, competitive exclusion and dispersal limitations 
(Deschamps et al., 2023). Further studies should investigate how 
to overcome those limitations by for instance constraining overall 
species predictions by a carrying capacity of a community or mod-
elled species richness or by an explicit consideration of dispersal 
limitations in the models.

4.2  |  Imbalance trade- off

Like many species' community data, our dataset showed a strong 
imbalance in terms of the species occurrences, with the ratio of 
common versus rare species up to 3464:1. This is challenging for 
a neural network model, as it tends to only focus on the common 
species. Therefore, to address this issue, we adopted a loss func-
tion (CB focal loss; Cui et al., 2019) that is imbalance- aware and as-
signs a weight on each species based on its effective occurrences 
(Janson, 1986) (see Section A4 in Appendix S1 for comparison 
with other loss functions). That way, the loss function down- 
weights common species, making them much less significant com-
pared with rare species. However, besides the above weighting 
scheme, there are other strategies such as Inverse of Number of 
Samples (INS) and Inverse of Square Root of Number of Samples 
(ISNS) (Abdi & Hashemi, 2015; Venkatesan & Er, 2016), or label- 
distribution aware margin- based losses (Cao et al., 2019) attempt-
ing to find the right balance for predictions between common 
and rare species. Adapting and choosing the ideal loss function is 
an active field of research, notably to find the optimal weighting 
scheme to take into account the rare items while keeping a decent 
performance on the frequent ones (overall performance in other 
words).
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4.3  |  Choice of model architectures

We here introduced the four popular neural network architec-
tures that are widely applied in other domains. While they have a 
similar global structure (feature extractor plus classifier), there are 
trade- offs on the choice of model architectures. Generally speak-
ing, MLP- based models are preferred for tabular data, as they ex-
plore each variable extensively, with fully connected layers, the 
relationship with other input variables. However, for image data, 
a MLP model has to counter a large number of pixels, which re-
sults in slow computations, and overfitting as the model learns 
on a pixel level. This would make the model focus too much on 
the specifics of an image, such that it fails at generalizing to new 
images. Therefore, CNN and ViT models are often considered for 
image data, since they both have the ability to learn the spatial 
relationships between subsets of pixels in an image, reducing com-
putational time and the overfitting, while also capturing essential 
information. Between CNN and ViT, even though ViT models show 
competitive, or even superior results on various tasks in other re-
search domains, they have major drawbacks compared to CNNs 
in that (1) they generally require a large amount of data to be able 
to stabilize and achieve competitive accuracy; (2) the training of 
ViT models is difficult and requires sophisticated strategies (more 
details are discussed in the next sections); and (3) they are slow in 
terms of inference execution time, as they possess larger model 
sizes compared to CNNs. Therefore, for applications that require 
good performance and real- time execution, CNNs are preferred 
and still much used in real- world applications. In the meantime, 
multimodal models are gaining momentum since they can take the 
best from the different data sources. This paper demonstrates the 
use of two types of data in a single model and has better perfor-
mance compared with single- modal models. However, challenges 
of multimodal models exist in terms of fusion, feature alignment, 
etc. that need to be further studied (Ngiam et al., 2011).

In the domain of species distribution modelling more broadly, 
there are also other deep learning architectures that deserve ex-
perimenting and have started to be tested. For instance, deep 
learning models were adapted to capture relevant data- generating 
processes, for example modified to accommodate co- occurrence 
(Deneu et al., 2019), or to account for species detection probabili-
ties (Joseph, 2020). The choice of models using deep learning can be 
beyond the above- proposed models, targeting specific goals in the 
field. We thus hereby encourage more studies on the model struc-
tures with a standardized evaluation scheme so that rigorous com-
parisons between models can be demonstrated.

4.4  |  Choice of training schemes

Different strategies can be used to train the feature extraction com-
ponents of deep learning models. In this paper, given the availabil-
ity of ground truth annotations (labels), we adopted an end- to- end 
(1) supervised learning scheme. This scenario is convenient when 

the amount of data is fairly large such that the model effectively 
learns representations that best disentangle given labels. However, 
in real- world scenarios, the acquisition of these ground truths could 
be quite expensive and time- consuming, and their qualities can be a 
determinant factor of the model performance.

In cases where only a few data annotations are available, (2) semi- 
supervised learning (Zhu & Goldberg, 2022) allows training with few- 
annotated data by making use of existing annotations while exploring 
the structure of the non- annotated data points. Using data augmen-
tation with generative models (Yang et al., 2022) (e.g. variational au-
toencoders, generative adversarial networks), label propagation in 
similarity graph (Wan et al., 2021) or self- training techniques (Amini 
et al., 2022), and so on semi- supervised methods learn feature embed-
dings that have better generalization capability to unseen data.

In the extreme case of no annotated samples, (3) self- supervised 
learning involves training models on unlabeled data by creating 
surrogate tasks where the model generates its own labels from 
the input data. Example tasks include rotation prediction, image 
reconstruction, colorization or contrastive learning. As an example 
of image reconstruction tasks, Masked AutoEncoders (MAE) (He 
et al., 2022), involves masking parts of the input image and training 
the model to reconstruct the missing parts. On the contrary, con-
trastive techniques like SimCLR (Chen et al., 2020), or MoCo (He 
et al., 2020) involve generating positive (similar) and negative (dis-
similar) pairs by applying deformations on input images, such that 
the models are trained to maximize agreement between positive 
pairs and minimize it between negative pairs. Self- distillation, a tech-
nique where the model improves itself by learning from its own soft 
(i- e probabilistic) predictions, showed promising results with ViTs 
(Caron et al., 2021; Oquab et al., 2023) with applications in remote 
sensing (Tolan et al., 2024).

At the embedding and classifier level, pretrained models can be 
used as feature extractors to extract embeddings which are then 
used as fixed predictors in any classifier/regression model. But one 
can also leverage (4) transfer learning techniques to transfer the 
knowledge, learned through large datasets, to new prediction tasks. 
This is achieved by further training, that is fine- tuning the whole net-
work or a subset of its layers on the new prediction task. Various 
techniques have been developed for extreme cases with very scarce 
(few shot) or no data (zero- shot).

In the domain of species distribution modelling, we need to con-
sider difficult scenarios, with no ground truth or few ground truths 
and develop training methods accordingly in order to learn robust 
embeddings and facilitate further work.

4.5  |  The training of ViT models

As briefly mentioned, ViT models require large datasets as well as 
well- designed training strategies in order to reach on- par or superior 
performance compared to CNNs. Therefore, ongoing research has 
been actively looking for ways to train ViTs more effectively. For in-
stance, in Shiv and Quirk (2019); Wu et al. (2021); Chu et al. (2021), 
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the authors designed positional encoding techniques to improve 
awareness of a ViT with image patches. In Touvron, Cord, and 
Jégou (2022); Touvron, Cord, El- Nouby, et al. (2022), the authors 
proposed techniques such as layer parallelism and 3- Augment to 
reduce model redundancy and improve generalization. In addition, 
(Touvron, Cord, El- Nouby, et al., 2022) also suggested a more effec-
tive way using transfer learning, that is to fine- tune only the multi- 
head attention layers and freeze the feedforward network. This 
would allow the fixed layers, which dominate the model parameters, 
to be applied to various tasks. Generally speaking, transfer learning 
on ViTs is preferred compared to training from scratch. And even 
more recently, ViTs have been applied with self- supervised training 
methods (Caron et al., 2021; Chen et al., 2021; Li et al., 2021), with 
the goal being mainly to learn feature representations using data 
without labels (i.e. ground truths). These innovative methods would 
save immense efforts on the data annotation, while achieving state- 
of- the- art results.

Therefore, while slightly under- performing in the task of multi- 
species predictions, there are still many potential avenues to explore 
regarding the ViT models. Importantly in the field of SDMs, ViTs 
need to be more robust against data imbalance, more efficient in 
terms of training, and more adaptive to multiple tasks with relatively 
few data.

4.6  |  Data processing

For both classic and deep learning methods in species distribution 
modelling, data can come from various sources with different qualities 
and spatial scales. Moreover, data used at large spatial scales often 
originates from heterogeneous sources with varying geo- location 
accuracy. Pre- screening input images for data quality (e.g. location 
uncertainty, low visibility and edge effects) and normalization (centre- 
scaling or min- max) of both tabular and image features are examples 
of preprocessing that needs to be tailored to the data type.

Some of these issues can also be addressed within the deep 
learning training itself. For instance, at the training stage, Data 
Augmentation can be used to encourage the models to learn repre-
sentations that are robust to arbitrary noise on the data (e.g. rotation 
and sensor noise) and at the same time increase the size of the dataset 
for a cheap price. In addition, some important normalization methods 
are deeply integrated into the model structure. For example, batch 
normalization (Ioffe & Szegedy, 2015) handles the scales of an incom-
ing data batch, while layer normalization (Ba et al., 2016) deals with 
scales in the feature dimension. Oftentimes a neural network would 
apply such normalizations on a regular basis in each block of its struc-
ture, leading to stable training and more persistent performance.

4.7  |  Generalization to unobserved species

To broaden the applicability of these models, it is crucial to eval-
uate their capacity to generalize to new environments and new 

species. There are several methods to increase the generalization 
capacity in the field of transfer learning. Recently, methods such 
as (Hu et al., 2021; Mangla et al., 2020) added self- supervised 
learning tasks (e.g. predicting the rotations of input images) in-
side the supervised training scheme to further improve the gen-
eralization capacity. In terms of application to unseen data, and 
by that we mean unseen labels/classes during training, ‘zero- shot’ 
strategies rely on the model's generalization capacity without fur-
ther training. As an example, one case could use our embeddings 
optimized for vegetation communities to predict bird species in 
similar environments. However, zero- shot strategies can perform 
poorly when there is a domain mismatch between the training and 
inference/prediction dataset. This could happen for instance if we 
use the CNN trained on alpine landscapes to predict vegetation in 
urban areas. In this case, it is recommended to fine- tune the mod-
els on data for the new tasks. Exploring the application of transfer 
learning to adapt the trained parameters to new datasets in differ-
ent ecological domains and spatial data scales, and understanding 
how domain differences affect model performance is a promising 
research avenue. As described above, experiments can be con-
ducted in two directions: (1) develop a more sophisticated training 
procedure to learn better features that are robust to spatial scales, 
and (2) fine- tune with unseen data using better strategies.

5  |  CONCLUSIONS

In this paper, we introduced deep learning methods for multi- 
species distribution predictions. We proposed neural network 
models tailored to accommodate two common data structures 
in species distribution modelling: tabular data and image data. 
Through experiments conducted on a specific dataset, we show-
cased the models' capacity to predict multiple species simulta-
neously, simplifying the task compared with traditional methods 
that model species individually. Additionally, our models exhibited 
the ability to handle species imbalance effectively. We also em-
phasized model interpretability, providing insights into how the 
models learn discriminative features and identify shared charac-
teristics to predict communities. Notably, we discovered that in 
our specific case, the MLP on tabular data can be just as effective 
as the CNN and other models on image data for the prediction 
task, achieving a similar level of performance.

Deep learning methods have gained popularity across various 
domains and applications. In the context of species distribution 
modelling, this work can serve as a foundational reference for re-
searchers interested in applying neural networks to related subjects. 
Given the perception of deep learning models as ‘black boxes’, we 
also encourage further studies on model interpretability, alongside 
efforts to enhance performance within the field of ecology.
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